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The net method is used to obtain the numerical solution of the problem
of the kinetics of the temperature field in a three-layered colloidal
body in the presence of phase transformations, The obtained resultsare
compared with experimental data,

In some practically important problems of heat and
mass transfer (purely technological problems of hy-
drothermal processing of materials, heat-engineering
calculations of various kinds for barrier structures,
automatic regulation of drying from the temperature of
the material, etc.) only the kinetics of the tempera-
fure field needs to be investigated. The effect of mass
transfer on the heat transfer in this case is corrected
by the introduction into the differential heat conduc-
tion equations and boundary conditions of heat sources
due to the occurring mass transfer processes and by
the introduction of equivalent thermophysical coeffi-
cients.

With sufficient accuracy for practical purposes we
can confine ourselves to approximate solutions ob-
tained by numerical integration methods.

We consider a system composed of three unbounded
contacting plates. We introduce the symbols

Ry=Rp+r, (n=1,2 3, Ry=0).

The thermophysical coefficients (TPC) of the plates
in the general case depend on the temperature. The
system of heat conduction equations is linearized by
the introduction of averaged equivalent TPCs based on
an analysis of the temperature dependence of the TPCs
and an analysis of the kinetics of internal heat and
mass transfer in the hydrothermal processing of ma-
terial. The TPCs, like A,, for instance, are averaged
by using the relationship
ts
fxmﬂ. 5
The mathematical formulation of the problem is as
follows:
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with initial conditions
T, (¢, 0) = Ty = const. (3
At the contacting surfaces of the plates the boundary
conditions are of the 4th kind
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which express the occurrence of phase transformations
and

T,(R,—0, ©) =T, (R, +0,7) (n=1, 2). (5

On the outer boundaries of the plates the boundary con-
ditions are of the 1st kind:
7,0, 0 =0,(0). ToRe 1) =a;().  (6)

An exact solution of (2) with more general boundary
conditions, including boundary conditions of the 2nd
and 3rd kind, is given in [1, 2].

Problem (2)—(6) is solved by the numerical method
for the specific case of baking of wheat bread in a
KhVK-2 oven (Odessa Bakery). The bread is regarded
as a system of three unbounded plates in thermal con-
tact 1, 3]. Subscripts n = 1,3 indicate the upper and
lower crusts, and n = 2 indicates the crumb. The
thicknesses of the crusts and crumb are assumed to
be constant. In fact, the thickness of the crusts during
baking varies slightly owing to thermal diffusion of
moisture and the gradual shift of the zone of evapora-
tion to the center of the crumb. If we assume that the
crusts are thin {in our case r; = 0.002 m, r; = 0.003 m)
in comparison with the crumb (r, = 0.070 m)} this as-
sumption is quite valid for practical purposes. More-
over, the TPCs of the crusts were calculated as for
a composite body (crust, dough) with due regard to the
laws of crust formation [4].

The baking process, according to established the-
ory, is divided into two periods: the periods of in-
creasing and the constant rate of moisture removal
[4]-

Functions fn(x, 7 in (2) take into account all the heat
sources (the heat spent on the slight evaporation of
moisture from the open surface and the effect of ther-
mal diffusion of moisture on heat transfer in the first
period, and the heating of molarly transferred vapor
in the upper crust in the second period). Their analyt-
ical representation is based on a thorough analysis of
the kinetics of moisture removal during baking, which
is impossible in factory experiments.

In calculations of the temperature field of the
dough—bread during baking the effect of mass trans-
fer on the heat transfer was taken into account by the
introduction of equivalent TCPs (the criterion Kj,
based on Ginzburg's investigations {4], for dough in
the first period was taken as 0.14).

In the second period there is hardly any mass trans-
fer in the crumb since the moisture content of the
crumb is practically constant. In view of the above the
values of fp{x, 7) in the numerical integration of {2) are
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assumed to be zero. In (4) dy3(r) = 0 for the whole pe-
riod of baking since almost all the moisture evapo-
rated in the region of the lower crust moves into the
crumb, where it condenses (the heats of evaporation
and condensation are almost the same).

The evaporation of moisture on the upper crust/
crumb boundary is significant only in the second pe-
riod and was taken into account for this period only in
(4) by means of a constant negative heat source ¢ =
= const = C.

For numerical integration of the simplified system
(2)—(6) we used the rectangular net method. In the
choice of the net equation the most important points are
the stability in regard to rounding-off errors, the
order of the approximation error, and its simplicity.
In view of this we used a six-point symmetrical non-
explicit net equation with an order of approximation
O(h* + I3 [5, 6], which for anunbounded plate is written
as follows:
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This net equation is absolutely stable [7], which removes
the limitations imposed on the relationshipbetween hand
. For its solution we used the method of recursion [8],
which is easily carried out by electronic computers.

The points of division of the media (x =R, x = Ry)
are characterized by the fact that the temperature in
their vicinity varies most. Hence, at the boundaries
of contact of the media we have to use a net equation
with a higher order of approximation but which still
allows the use of the method of recursion. This can be
done by the introduction of virtual nodes (R1 — h,, ki),
(Ry+ hy: k) and (Ry ~ hg, k), (By + by, k) (k= 0 1,2,...)
at which the values of t(x, 1) are denoted by t11 1,k
tl +1,k and t12_1 k> t12+1 k Tespectively [6].

Assummg that the solution of problem (2)—(6) for
one medium can be extrapolated smoothly into the
neighboring medium (broken lines in Fig. 1) and writ-
ing the boundary condition {4) with an error not exceed-
ing 0(h), and writing at the nodes (Ry — 0, (k + 1)) and
(Ry + 0, (k + 1)) the more accurate equation with error
0(h*) [6], we obtain formula (8) for calculation of the
values of #{x, 7) at the point x = Ry, i.e., fori=ig
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where

dy=h/a,, dy=n/a,

The virtual values of t*ii-i, k and t;(ﬁ'l’ k in (8) are
calculated from the above net equations of higher ac-
curacy.

%o X2 Kbt Hpe2
X
"2‘,-3 X2 %1 J=8, I‘ X =Ry

X, 7

Fig. 1. Diagram of problem (VN are the virtual nodes).

For 7= 0 (k = 0) the virtual values are determined
from (3):

*

Zti;—l,O = to and t;—H,O = tO‘

There are similar formulas for the boundary of con-
tact x = Ry, the only difference being that we must put
C = 0 in the corresponding formulas since in (4) ¢y3(0 =
= 0.

To calculate the values of tj k+y (k=1,2,...,n~ 1)
at points which do not belong to the boundaries of con-
tact of the plates we use net equations of type (7) with
error O(h%).

Thus, if on the k-th layer with respect to T we know
the values of tl ki=12,..., n - n and also the vir-
tual values 1;11 1, ke t11+1 k and t12_1 ks t12+1 k> then the
(k+ L)th layer for points x =Ry, X #R, can be cal-
culated from formulas of type (7) and for points x = Ry
and x = Ry from formula (8) and similarly for the sec~
ond boundary of contact. To calculate the (k + 1)th
layer we obtain a system of linear equations with a Jac~
obian matrix, for the solution of which we use the
method of recursion [6, 8].

The calculations were done on a Minsk-1 electronic
digital computer for hy = hy = 0.0001 m, = 0.001 m;
ly =1 =13 = 3 min.

The values used for the averaged equivalent TPCs
for the first period of baking (r= 18 m1n) on the basis
of our own and published data were: y,; = 450 kg/m ,

A =0.22 W/m deg, @; = 2.52 * 107" m®/sec, 7, =
=550 kg/m°, 7\2 0.58 W/m - deg, @, = 3.92 - 10~" n? /sec,

¥3= 500 kg/m®, X; = 0.25 W/m - deg, @ 3 =2 ‘70 .

. 10“7 m®/sec. For the second perlod ¥i=7%; = 400 kg/m®,
«/2 = 450 kg/m®, X, = Ay, 7\3 =73, & = 0.50 W/m - deg,
ai— 2.66 + 1077 m?/sec, a,z = 4.48 - 1077 m?/sec. The

specific heats calculated from these data for the crust,
dough, and crumb agree with the most accurate pub~
lished data [4].

The calculated and experimental data for the kinet~
ics of the temperature field of bread during baking are
given in Fig. 2.

The temperatures in the dough /bread were measured
by copper-constantan differential thermocouples and
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recorded on graph tape in front of a calibrated elec-
tronic potentiometer. The thermocouple leads were
wound helically between the fingers of cradles, which
prevented their breakage.
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Fig. 2. Temperature fields of body during baking,

obtained on Minsk~1 computer (continuous lines),

and experimental data recorded on an electronic

potentiometer (experimental points) . Points 1—~8

correspond to times 7= 6, 12, 18, 24, 30, 36, 42,

and 45 min from the start of baking. The height x
of the bread is in mm, T is in° K.

A comparison of the experimental and theoretical
curves of the kinetics of the temperature field shows
their good agreement. The somewhat higher value of
the calculated temperature in the region of the upper
crust must be attributed to the fact that in the solution,
fix, ) and 4)12(7') were put equal to zero and, obvious~
ly, to other restrictions of the probl'em. In labora-
tory experiments fi(x,7) and ¥15(7) can be calculated
on the basis of the kinetics of moisture removal.
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NOTATION

T (n = 1.7, 3) is the thickness of the plates, Ry are
the total th. sznesses of neighboring plates; T(x,7 is
the temperature; €, Vu, Ap. and ay ar. the equiva-
lent averaged specific heat, density, thermal conduc-
tivity, and thermal diffusivity of the plates; 7 is the
duration of the hydrothermal treatment of the material;
h and [ are steps along space and time coordinates
axes; t(x,7 is the solution of the net equation; w =
=1/l is a constant.
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